# LESSON 6.3a

**Introduction to Logarithms** 

#### Today you will:

- Learn what logarithms and logarithm functions are and how to evaluate them
- Learn about two special logarithms: common logs and natural logs
- Practice using English to describe math processes and equations

### **Core Vocabulary:**

- Logarithm base *b* of *y*, p. 310
- Common logarithm, p. 311
- Natural logarithm, p. 311

## Previous:

• Inverse functions



Some are easy to solve!

- $4 = 2^x$  **x** = **2**
- $125 = 5^x$  **x** = **3**

• 
$$\frac{1}{8} = 2^x$$
  $x = -3$ 

Others, not so easy...

- $6 = 2^x$
- $13.01 = 5.3^{x}$

How do we solve these things when they get weird?

Logarithms! 🙂



Read it as "Log base *b* of *y* is *x*" ...as an exponential function it is *b* to the *x* is *y*  Rewrite each equation in exponential form.

**a.** 
$$\log_2 16 = 4$$
 **b.**  $\log_4 1 = 0$  **c.**  $\log_{12} 12 = 1$  **d.**  $\log_{1/4} 4 = -1$   
SOLUTION

| Logarithmic Form                   | <b>Exponential Form</b>             |
|------------------------------------|-------------------------------------|
| <b>a.</b> log <sub>2</sub> 16 = 4  | 2 <sup>4</sup> = 16                 |
| <b>b.</b> log <sub>4</sub> 1 = 0   | 4 <sup>0</sup> = 1                  |
| <b>c.</b> log <sub>12</sub> 12 = 1 | 12 <sup>1</sup> = 12                |
| <b>d.</b> $\log_{1/4} 4 = -1$      | $\left(\frac{1}{4}\right)^{-1} = 4$ |

Rewrite each equation in logarithmic form.

**a.** 
$$5^2 = 25$$
 **b.**  $10^{-1} = 0.1$  **c.**  $8^{2/3} = 4$  **d.**  $6^{-3} = \frac{1}{216}$   
SOLUTION

Exponential Form

Logarithmic Form

**a.**  $5^2 = 25$ 

**b.**  $10^{-1} = 0.1$ 

**c.**  $8^{2/3} = 4$ 

**d.**  $6^{-3} = \frac{1}{216}$ 

 $\log_5 25 = 2$ 

 $\log_{10} 0.1 = -1$ 

$$\log_8 4 = \frac{2}{3}$$

$$\log_6 \frac{1}{216} = -3$$

Some special logarithm values:

- $\log_b 1 = ? \longrightarrow b^0 = 1$ 
  - $b^? = 1$  Rewrite as exponential
  - ? = 0 ...anything raised to the zero power is 1

- $\log_b b = ? \longrightarrow b^1 = b$ 
  - $b^? = b$  Rewrite as exponential
  - ? = 1 ...anything raised to the 1st power is itself

Evaluate each logarithm. Some easier ones you can maybe do in your head...

**a.** 
$$\log_4 64$$
 **b.**  $\log_5 0.2$  **c.**  $\log_{1/5} 125$  **d.**  $\log_{36} 6$ 

#### SOLUTION

To help you find the value of  $\log_b y$ , ask yourself what power of b gives you y.

- **a.** What power of 4 gives you 64?  $4^3 = 64$
- **b.** What power of 5 gives you 0.2?  $5^{-1} = 0.2$
- **c.** What power of  $\frac{1}{5}$  gives you 125?

$$\left(\frac{1}{5}\right)^{-3} = 125$$

**d.** What power of 36 gives you 6?  $36^{1/2} = 6$ 

Now ... what about solving something like  $6 = 2^x$ ? Not doing that in our heads! Gonna need our calculators for this one.

Look at your calculator, there are two buttons on it related to logarithms, can you find them?

- LOG
- LN

For each of these, what is the 2<sup>nd</sup> function (in blue)?

- LOG  $\rightarrow 10^{\chi}$
- $LN \rightarrow e^{\chi}$

These are logarithms each with a specific base...

### **Common Logarithm**:

- A logarithm with base 10
- Denoted as  $\log_{10}$  ... or as just  $\log$
- If you see the word "log" with no base identified, it is automatically base 10

## Natural Logarithm:

- A logarithm with base *e*
- Denoted as  $\ln$  ... can be written as  $\log_e$  but you will rarely if ever see this
- If you see the word "In", it is automatically base *e*

This means the only exponential functions our calculator can directly help us with are ones with base 10 or base *e*.

So how do you solve an exponential function that does not have a base of 10 or *e*?

We will learn how to do that in a few days! Be patient!

Right now we are going to focus on common logs (base 10) and natural logs (base e).

Evaluate (a) log 8 and (b) In 0.3 using a calculator. Round your answer to three decimal places.

#### SOLUTION

10^(0.903) 7.99834255 e^(-1.204) .2999918414 Most calculators have keys for evaluating common and natural logarithms.

**a.** log 8 ≈ 0.903

**b.** In  $0.3 \approx -1.204$ 

Check your answers by rewriting each logarithm in exponential form and evaluating.

log(8) .903089987 ln(0.3) -1.203972804

## Homework

Pg 314, #1-34